

Overview of the MEDLI Project

Michael Gazarik¹, Helen Hwang², Alan Little¹, Neil Cheatwood¹, Michael Wright², Jeff Herath¹

¹NASA Langley Research Center, Hampton, VA, USA

²NASA Ames Research Center, Mountain View, CA USA

26 June 2007

MSL Entry, Descent, and Landing Instrumentation (MEDLI) Rationale

- MSL is taxing the limits of current modeling capabilities for Mars entry missions
 - Aeroheating uncertainties are greater than 50% on heatshield, due to early transition to turbulence, surface chemistry, and ablation induced roughness.
- A primary source of uncertainty is a lack of relevant flight data for improved model validation
 - A small amount of Thermal Protection System (TPS) performance data was obtained from Pathfinder, but no direct measurements of aeroheating, aerodynamics, or atmosphere.
- MEDLI is a suite of instrumentation embedded in the heatshield of the MSL entry vehicle
 - Measures temperature, TPS recession, and pressure
- MEDLI will collect an order of magnitude more EDL data than all previous Mars missions combined
 - Thermocouple and recession sensor data will significantly improve our understanding of aeroheating and TPS performance uncertainties for future missions.
 - Pressure data will permit more accurate trajectory reconstruction, as well as separation
 of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic
 regimes.

IPPW-5 26 June 2007 2

MEDLI Operations Concept During MSL EDL

MEDLI System Description

- MEDLI Instrumentation consists of:
 - 7 pressure ports through heatshield
 - 7 sensor plugs, each containing four thermocouples and a recession sensor
- Sensor Support Electronics provides power to the sensors, conditions and digitizes the sensor signals
- Digitized data stream is sent via MSL's Descent Stage to Rover for storage until the data is telemetered back to Earth after landing

MEDLI Science Objectives

Aerothermal & Thermal Protection System

- Measure local discrete surface and in-depth temperatures and recession rates for post flight estimation of:
 - aeroheating profile
 - TPS recession rate
 - material response
- Verify transition to turbulence
- Determine turbulent heating levels
- Determine recession rates and subsurface material response of ablative heatshield at Mars conditions

Aerodynamics & Atmospheric

- Measure local discrete surface pressure measurements for post flight estimation of:
 - dynamic pressure
 - angle-of-attack
 - · angle-of sideslip
- Separate aerodynamics from atmosphere
- Determine density profile over large horizontal distance
- Isolate wind component
- Confirm aerodynamics at high angles of attack

MEDLI Measurements: Sensor Placement Strategy

Aerothermal/TPS Objectives

Technical Objectives	Location						
reclinical Objectives		T2	Т3	T4	T5	T6	T7
Basic Aeroheating	X	X	X	X	X	Χ	Χ
Stagnation Point Heating	Х			Х			
Turbulent Leeside Heating		Х	Х		Х	Χ	Χ
TPS Recession Rate	Х	Х	Χ		Х	X	Χ
- Windside Heating Augmentation	Х			Х			
TPS Total Recession	Х	Х	Χ		Х	X	Χ
Subsurface Material Response	Х	Х	Х	Х	Х	Х	Х
Turbulent Transition		X	X			X	X

Technical Objectives	Location						
reclinical Objectives	P1	P2	Р3	P4	P5	P6	P7
Basic Surface Pressure	X	X	X	X	X	X	X
Angle of Attack	Х	X	Х	X	X		
Angle of Sideslip				Х		Χ	Х
Dynamic Pressure	Х	Х					
Mach Number	X	X					

MISP Subsystem Design

MEADS Subsystem Design

Sensor Measurements

MISP sensor data acquisition rates function of location and depth

Plug ID	TC1	TC2	TC3	TC4	HEAT
T1	8 Hz	8 Hz	1 Hz	1 Hz	8 Hz
T2	8 Hz	8 Hz	2 Hz	2 Hz	8 Hz
Т3	8 Hz	8 Hz	1 Hz	1 Hz	8 Hz
T4	8 Hz	8 Hz	1 Hz	1 Hz	None
T5	8 Hz	8 Hz	None	None	8 Hz
Т6	8 Hz	8 Hz	1 Hz	1 Hz	8 Hz
T7	2 Hz	2 Hz	None	None	8 Hz

- MEADS sensor data acquisition rates
 - All pressure sensors measured at 8 Hz
- All signals digitized at 14bits with single analog-to-digital converter
- Multiplexed data stream converted to RS-422 interface for transmission to MSL electronics

Mission Operations: After MSL Landing

- Receive all MEDLI Data and relevant Spacecraft data from MSL Central Data Management & Distribution
 - Evaluate returned data
 - Deliver data in engineering units to MEDLI Science Team
 - Work with MSL EDL team to evaluate the entry
 - Report to MSL on MEDLI instrument findings

- MEDLI instrumentation suite measures temperature, pressure, and recession of MSL entry vehicle's heatshield
- MEDLI will collect an order of magnitude more EDL data than all previous Mars missions combined
 - Thermocouple and recession sensor data will significantly improve our understanding of aeroheating and TPS performance uncertainties for future missions.
 - Pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes.